
Nonstandard coproducts and the Izergin-Korepin open spin chain

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys. A: Math. Gen. 33 L21

(http://iopscience.iop.org/0305-4470/33/2/101)

Download details:

IP Address: 171.66.16.118

The article was downloaded on 02/06/2010 at 08:08

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/33/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.33 (2000) L21–L26. Printed in the UK PII: S0305-4470(00)09597-4

LETTER TO THE EDITOR

Nonstandard coproducts and the Izergin–Korepin open spin
chain

Rafael I Nepomechie
Physics Department, PO Box 248046, University of Miami, Coral Gables, FL 33124, USA

Received 16 November 1999

Abstract. Corresponding to the Izergin–Korepin (A(2)2 ) R matrix, there are three diagonal
solutions (‘K matrices’) of the boundary Yang–Baxter equation. Using theseR andK matrices,
one can construct transfer matrices for open integrable quantum spin chains. The transfer matrix
corresponding to the identity matrixK = I is known to haveUq(o(3)) symmetry. We argue here
that the transfer matrices corresponding to the other twoK matrices also haveUq(o(3)) symmetry,
but with a nonstandard coproduct. We briefly explore some of the consequences of this symmetry.

1. Introduction and summary

The notion of coproduct is of fundamental importance in the theory of representations of
algebras. Given a representation of an algebra on a vector spaceV , the coproduct1 determines
the representation on the tensor product spaceV ⊗V . For a classical Lie algebra, the coproduct
is trivial: for any generatorx, the coproduct is1(x) = x ⊗ I + I⊗ x, whereI is the identity
matrix. For quantum algebras, the situation is more interesting. Indeed, consider the case
Uq(su(2)), with a set of three generators{j±, h} obeying

[h, j±] = ±j±. (1)

As is well known, the ‘standard’ coproduct

1(h) = h⊗ I + I⊗ h
1(j±) = j± ⊗ qh + q−h ⊗ j± (2)

is compatible with the commutation relation

[j+, j−] = q2h − q−2h

q − q−1
. (3)

Perhaps less well known is the fact that there is also a ‘nonstandard’ coproduct

1(h) = h⊗ I + I⊗ h
1(j±) = j± ⊗ I + qh ⊗ j± (4)

which is compatible instead with theq-commutation relation

j+j− − q−1j−j+ = I− q
2h

1− q2
. (5)

Remarkably, both of these types of coproducts can be realized in the open integrable
quantum spin chain constructed with theA(2)2 R matrix [1] by choosing appropriate boundary
conditions. Let us briefly recall the history of this model. Sklyanin [2] pioneered
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the generalization of the quantum inverse scattering method (QISM) [3] to systems with
boundaries, and showed that integrable boundary conditions can be obtained from solutions
K(u) of the boundary Yang–Baxter equation [4, 5]. This approach was then generalized [6]
to spin chains associated with general affine Lie algebras [7, 8]. In particular, for theA

(2)
2

case, it was found [9] that there are only three diagonal solutions of the boundary Yang–Baxter
equation:

K(0)(u) = I = diag(1, 1, 1)

K(1)(u) = diag

(
e−u,

sinh( 1
2(3η − iπ

2 + u))

sinh( 1
2(3η − iπ

2 − u))
, eu

)

K(2)(u) = diag

(
e−u,

cosh( 1
2(3η − iπ

2 + u))

cosh( 1
2(3η − iπ

2 − u))
, eu

) (6)

whereu is the spectral parameter, andη is the anisotropy parameter. Let us denote the
corresponding transfer matrices for open quantum spin chains withN sites by t (i)(u),
i = 0, 1, 2. (The construction of these transfer matrices is described below in section 2.)
It was shown in [10, 11] that the transfer matrixt (0)(u) constructed with the identity matrix
K(0) hasUq(o(3)) symmetry:

[t (0)(u), S±] = 0 [t (0)(u), S3] = 0 (7)

where the generators obey

[S3, S±] = ±S± [S+, S−] = q2S3 − q−2S3

q − q−1
(8)

and

S± =
N∑
k=1

qs
3
N+···+s3

k+1s±k q
−(s3

k−1+···+s3
1) S3 =

N∑
k=1

s3
k (9)

where

s+ =
√

2 coshη

( 0 1 0
0 0 1
0 0 0

)
s− =

√
2 coshη

( 0 0 0
1 0 0
0 1 0

)
s3 =

( 1
0
−1

)
(10)

andq = eη. That is, the transfer matrix has quantum algebra symmetry with the ‘standard’
coproduct (2). This is a generalization of the observation [12, 13] ofUq(su(2)) symmetry
for theA(1)1 case. Batchelor and Yung [14] later showed that the openA

(2)
2 spin chain can be

mapped to the problem of polymers at surfaces, and that the above three solutionsK(i)(u)

correspond to three distinct surface critical behaviours.
There has remained the question: what symmetry—if any—do the transfer matrices

constructed withK(1) andK(2) have? Naively, one expects that sinceK 6= I, there is less
symmetry†. However, this isnot the case. We argue here that the transfer matricest (1)(u) and
t (2)(u) also haveUq(o(3)) symmetry, but with a ‘nonstandard’ coproduct (4):

[t (i)(u), S±] = 0 [t (i)(u), S3] = 0 i = 1, 2 (11)

where the generators obey

[S3, S±] = ±2S± S+S− − q−2S−S+ = I− q
2S3

1− q2
(12)

† This expectation holds true for theA(1)n case [15]. Indeed, there the diagonalK matrices contain an additional
continuous parameterξ ; andK = I is a point (ξ →∞) of enhanced symmetry.
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and

S± =
N∑
k=1

s±k q
s3
k−1+···+s3

1 S3 =
N∑
k=1

s3
k (13)

where

s+ =
( 0 0 1

0 0 0
0 0 0

)
s− =

( 0 0 0
0 0 0
1 0 0

)
s3 =

( 1
0
−1

)
(14)

and q = e4η. Knowledge of such symmetry is essential for understanding important
features of the models such as degeneracies of the spectrum and the Bethe Ansatz solution.
Equations (11)–(14) are the main results of this letter. In section 2 we provide some pertinent
details about the construction and symmetry of the models, and we conclude in section 3 with
a brief discussion.

2. Some details

In this section, we briefly review the construction of the transfer matrices, and outline the
argument for their symmetry. The solutionR(u) of the Yang–Baxter equation found by
Izergin and Korepin [1], which corresponds [7, 8] to the caseA

(2)
2 , can be written in the

following form [11,16]:

R(u) =



c

b

d

e

g f

ē

ḡ

b

a

b

g

e

f̄ ḡ

ē

d

b

c


(15)

where

a = sinh(u− 3η)− sinh 5η + sinh 3η + sinhη b = sinh(u− 3η) + sinh 3η

c = sinh(u− 5η) + sinhη d = sinh(u− η) + sinhη

e = −2e−
u
2 sinh 2η cosh

(u
2
− 3η

)
ē = −2e

u
2 sinh 2η cosh

(u
2
− 3η

)
f = −2e−u+2η sinhη sinh 2η − e−η sinh 4η f̄ = 2eu−2η sinhη sinh 2η − eη sinh 4η

g = 2e−
u
2 +2η sinh

u

2
sinh 2η ḡ = −2e

u
2−2η sinh

u

2
sinh 2η.

It has the regularity propertyR(0) ∝ P, whereP is the permutation matrix, as well as unitarity,
PT symmetry, and crossing symmetry:

R12(u) = V1R12(−u− ρ)t2V1 = V t22 R12(−u− ρ)t1V t22 (16)

where the crossing matrixV is given by

V =
( −e−η

1
−eη

)
(17)

andρ = −6η − iπ .
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Given a solutionK(u) of the boundary Yang–Baxter equation, a corresponding transfer
matrix t (u) for an open integrable quantum spin chain withN sites is given by [2,6,15]

t (u) = tr0M0K0(−u− ρ)t0T0(u) (18)

where

T0(u) = T0(u)K0(u)T̂0(u) (19)

with

T0(u) = R0N(u) . . . R01(u) T̂0(u) = R10(u) . . . RN0(u) (20)

and

M = V tV = diag(e2η, 1, e−2η). (21)

Indeed, the transfer matrix forms a one-parameter commutative family [t (u), t (v)] = 0, which
contains the HamiltonianH,

H ∝ d

du
t(u)

∣∣∣∣
u=0

. (22)

For the threeK matricesK(i)(u) given in equation (6), we denote byt (i)(u) the
corresponding transfer matrices, and byH(i) the corresponding Hamiltonians. We now restrict
our attention to the casesi = 1, 2. For two sites (N = 2), we have checked theUq(o(3))
symmetry, (11)–(14), of the transfer matrix by direct computation. In particular, equation(22)
implies that the two-site Hamiltonian also has this symmetry. For generalN , the Hamiltonian
is given by a sum of two-site Hamiltonians plus boundary terms. It follows that, for general
N , the HamiltonianH(i) hasUq(o(3)) symmetry

[H(i), S±] = 0 [H(i), S3] = 0 i = 1, 2 (23)

where the symmetry generators obey (12)–(14). We have also checked the symmetry (11) of
the transfer matrix for three sites (N = 3) by direct computation, and we conjecture that it
holds for generalN .

We remark that the symmetry generatorsS±, S3 defined in (13), (14) lie in the fundamental
algebraic structures of QISM. Indeed, note the asymptotic behaviour of theR andK matrices
for u→∞:

R(u) ∼ euR+ +R++ + O(e−u) (24)

K(i)(u) ∼ euK(i)+ +K(i)++ + O(e−u) i = 1, 2 (25)

whereR+, R++,K(i)+,K(i)++ are independent ofu. It follows that the quantityT (i)(u) defined
as in equation (19) has the asymptotic behaviour foru→∞

T (i)(u) ∼ e(2N+1)uT (i)+ + e2NuT (i)++ + · · · (26)

whereT (i)+, T (i)++ are independent ofu. The basic observation is that the generatorsS± lie
in the antidiagonal corners ofT (i)++ (viewed as a 3× 3 auxiliary-space matrix, with operator-
valued entries):

T (i)++ =
( 0 0 S−

0 ∗ ∗
S+ ∗ ∗

)
. (27)

We expect that this observation will be useful for formulating a QISM proof of the
symmetry (11).
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3. Discussion

One immediate consequence of the symmetry which we have uncovered is the explanation of
degeneracies in the spectrum for finiteN . For instance, consider the pseudovacuum vector

ω =
( 1

0
0

)⊗N
,

t (i)(u)ω = 3(i)(u)ω i = 1, 2 (28)

where3(i)(u) is the corresponding pseudovacuum eigenvalue. Commutativity of the transfer
matrix with S− implies that the vectors(S−)nω for n = 1, 2, . . . , N are also eigenvectors of
the transfer matrix with the same eigenvalue. Moreover, we observe that each site carries a
reduciblerepresentation of theUq(o(3)) algebra, namely2⊕ 1 (instead of3), implying the
degeneracy pattern(2⊕ 1)⊗N .

Note that the pseudovacuum vectorω is annihilated byS+; that is,S+ω = 0. We expect
that all Bethe Ansatz states (which can presumably be constructed by applying appropriate
creation-like operators toω) are such highest-weight states. (See, e.g., [10,17–19].)

Finally, we remark that we have considered here only the first of the infinite family of
modelsA(2)2n , n = 1, 2, . . . . For theseR matrices [7, 8], there are again only three distinct
diagonal solutions of the boundary Yang–Baxter equation:K(0) = I [9], andK(1), K(2) given
in [20]. The transfer matrix constructed withK(0) has [10] the symmetryUq(o(2n + 1)) with
the standard coproduct. We expect that the transfer matrices constructed withK(1) andK(2)

also haveUq(o(2n + 1)) symmetry, but with a nonstandard coproduct. We hope to report on
this and related matters in a future publication.

I am grateful to O Alvarez for his helpful comments. This work was supported, in part, by the
National Science Foundation under Grant PHY-9870101.
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